ATLAS Trigger & DAQ

The raw event format in the ATLAS Trigger & DAQ

Document version/issue: 4.0c

Document date: 09 February 2009
Document status: Final

Document Reference: ATL-D-ES-0019
Abstract

This note presents the ATLAS raw event format. It covers the format of data from the
ReadOut Drivers to the output of the Event Filter. It does not cover the detector specific
event data.

Editors:

André dos Anjos — University of Wisconsin/Madison
Hans Peter Beck — University of Bern

Benedetto Gorini — CERN

Issue Revision Date Reason for change

1 0 01 Apr ‘97 Birth.

1 1 07 Oct. ‘97 | General update of all sections.

1 2 20 Oct. ‘97 | Muon sub-detector IDs changed at the request of S. Falciano.

1 3 14-Aug. ‘98 Add an offset to ROD trailer that indicates the relative order of Data/status in-
formation. General clean-up. Appendix with an initial header file and an appendix
of an example use of the header file.

1 4 05-Sept.’98 | Redefined last word of ROD trailer. Comments on sub-detector ID’s from Phil-
ippe Farthouat. Comments from Jorgen Petersen.

1 15-Oct. ‘98 | Tidy-up ready for release as ATLAS note Remove Appendices.

2 0 11-Mar.‘02 Include feedback on version 1.5 from detector community Increase scope to in-
clude Level 2;

Change from DAQ -1 specific terminology;
Re-define Source ID;
Change Level 1 ID element to be defined as the combination of the 24-bit L1ID
and the 8-bit ECRID;
Add mechanism to determine byte ordering dynamically;
Remove section on ROL implementation;
Change unit of Total fragment size and Header size element to be 32-bit integer;
Re-define the Format version number so that it may also be used to identify the
format version of the detector Data;
Distribute to author list;
General Distribution
2 2 11-Oct. ‘02 Added Appendix A on ROL implementation issues;

Clean-up of section 2.1 (main requirements);

Implementation of Source ID element re-defined, i.e. Module ID now byte wide,
see section 5.2;

Global event ID removed from ROS specific header, section 5.10.3;
Introductory text in section 5 re-written;

Description of “Format version number” element re-written, section 5.6;
Corrected description of Bunch Crossing ID, Tables 8, 9 & 10;

Table 3 defining values for Sub-detector IDs updated to match known TTC parti-
tions;

Error in description of extended level 1 ID corrected, sections 4 & 5.10.1;
Clarified meaning of Detector Event Type element, section 4;
Remove Level 1 Trigger Info. from Full Event Specific header, section 5.10.1;

Initial values and meanings for generic status field (adopted from Levell - Data-
Flow interface document), section 5.8;

Remove LVL2-Data and LVL2-Result, table 2;

Added Rol Builder Module Type, table 4;

Deleted sections 5.10.6 and 5.10.7;

Expanded scope to include output of Event Filter, section 1.3;

Added section on Event Filter Output, section 5.11.

1 Feb. ‘04

Date and time element in Full Event Specific element (Section 5.10.1) redefined
to be the number of seconds elapsed since 00h00.00 on 1st Jan. 1970, i.e. in line
with Posix;

Run number added to Generic fragment and ROD fragment (section 3,4 and 5).
Remove run number from Full Event Specific element (section 5.9.1) and ROS
Specific Header (section 5.9.3);

A default sub-detector type added to Table 3. to be used for equipment which is
not specific to any single detector. Module type ‘Level 2 Processor’ changed to
‘HLT Processor’;

Added ‘Event Filter Info’ in section 5.9.1 and Table 6;
Changed ‘Level 1 ID’ to ‘Extended Level 1 ID’ where appropriate;
Updated some of the references;

Cleaned up some typing errors.

23 Feb. ‘04

11 Mar. ‘05

11 Apr. ‘05

01 June ‘05

27 Nov. ‘06

Added Appendix B which details additional values of the Sub-detector IDs to be
used in the 2004 Combined test beam;

Changed the order of Extended Level 1 ID and Bunch Crossing ID in table 9 so as
to be the same as in tables 10 and 11.

Dropped Module Type as same functionality achieved with a combination of
Header marker and Sub-detector Ids;

Additional TDAQ Sub-detector IDs, page 13, to account for removal of Module
Type Source ID re-defined, page 11, to allow more than 256 module Ids;

Removed Offset elements from generic header. Redundant infor- mation and re-
duces overall fragment size;

Removed run number from generic header Included Run Number in list of Full
Event Specific elements;

Removed Sub-detector specific header elements as this is just a straight copy of
what is in the Full Event Specific elements;

Removed ROB specific header elements. In previous versions these elements
were copied from a ROD fragment, i.e. ROS does not receive this information in-
dependently;

Removed LVLI1 result specific header elements;
Change description of Event Filter output to reflect removal of Offset elements;

Modified description of use of status elements. New usage reduces overall frag-
ment size;

Release to sub-set of community for initial immediate feed-back

Added a ‘Test’ run type, see page 16;

Release for comment;

Removed LVL1 Result Start of Header Marker;

Updated Appendix A to give bit definition of control words;

Removed some typing errors;

Clarified in section 2.3 that 1 ROB fragment contains only 1 ROD fragment

Clarified that for a ROD fragment the source ID contains the ROL number and
NOT ROD module ID;

Released for information in EDMS

Updated the Full Event header Specific elements to take into account Luminosity
block and streaming proposals, section 5.9.1;

Run number now defined as a 31-bit integer;
Added Appendix B: pending issues;

Added reference to document defining Status elements in ROS and ROB frag-
ments, section 5.8;

Added definition of the Status Elements in the Full Event Header, section 5.8

1 Dec. ‘06

Removed some typing errors

14 Dec. ‘06

4 0 23 Jan. ‘08

Added the run type to the Event Specific header, section 5.8 Level 2 and Event
Filter info words in Event specific header redefined, section 5.8, i.e. replace previ-
ous definitions of trigger info and type;

Removed ambiguity on Module ID in ROD fragments;

Format of bunch crossing time added;

Changed major version number to 3.1

Format simplification removing Sub Detector and ROS headers;

Introduced ROB trailer (check-sum) in consultancy with the ROS working group;

Clarified the meaning of specific status words in both ROB and Full Event frag-
ments;

Removed the Detector Mask field in the Full Event Header;
Updated References;

Disentangled major versions between ROD fragments and the remaining fragment
types;
Changed major version number to 4.0;

Removed Appendix on to-dos.

Included Appendix on the ROB trailer;

24 Jan. ‘08

25 Jan. ‘08

29 Jan. ‘08

04 Feb. ‘08

Included comments from Hans Peter

Included reference on ROB check-sum algorithm
Explain Full Event

Better text to some event fragments, emphasized wording
Page numbers were missing

ROBIN status: wording changed; removed exclamation marks; bit 24 is always
zero

Removed Appendix on Framing

Introduced check-sums as part of the standard fragment; Updated Appendix on
check-sums to include information on Adler-32

Changed Pixel Detector Source Identifiers
Incorporated number of modifications proposed by FIW
Reserved field in Source Identifiers becomes “optional”

Clarification on the interpretation of Status Elements

12 Feb. ‘08

02 Sep. '08
14 Oct. '08

4 Oc 09 Feb.'09

Clarifications proposed by MJ

Introduction of the “Simulation” flag in the Run Type table

Introduction of the Forward detectors at the Subdetector Identifier table

Clarify that, if a ROS builds a Full Event object, some fields may not be properly
initialized

Fix in forward detector Subdetector Identifier table by HPB

Specify HLT protocol for decoding the status words in HLT results

We now refer to the ROBIN status words at their Wiki page instead of redefining
them here

Added “Laser Crate” (0x50) subdetector identifier

Table 1: Document change record

1 Introduction

1.1 Purpose of the document

This document describes the raw event format and its implementation in the AT-
LAS Trigger and DAQ.

1.2 Overview

In Section 2 the requirements, function, purpose and a high-level description of
the event format is given. In Section 3 a detailed description is given. Section 4 presents a
description of the format of a fragment sent by a ROD over a ROL. In Section 5 the imple-
mentation of the event format is described. Appendix A covers details on the check-sum
trailer (algorithms and reference).

1.3 Boundaries

This document relates to the format of data into and out of the: RODs, Read-Out
Sub-system (ROS), Data Collection Sub-system, the LVL2 Selection and Event Filter Sub-
systems of the Higher Level Triggers (HLT). The framing information, necessary to ensure
the correct transmission of data between applications, e.g. ROD-to-ROB, is technology spe-
cific and therefore not part of the event format.

1.4 Definitions, acronyms and abbreviations

See reference [1].

2 General Description

2.1 Requirements

This sub-section lists a set of requirements on the various components of the
event format. The categories of requirements follow the guidelines given in [2]. Require-
ments containing the word shall are mandatory. Those containing the word should are
strongly recommended, justification is needed if they are not followed.

The event format shall fulfil the following requirements:

1. The event format shall allow the size of an event to increase or decrease depending
on the specific data taking configuration;

2. There shall be no minimum or maximum event data size implied by the format;

3. The event format should provide information redundancy to allow self consistency
checks of the event to be made;

4. The event formatting information shall not exceed 20% of the typical full ATLAS
event data size;

The event format should be modular;

The basic unit should be a fragment. Fragments are: parts of an event coming from a
ROD or ROB or the (Full) Event itself;

Please note that the term Full Event refers to the fragment with a preceding event header and con-
taining ROB fragments. The number of fragments held internally may not represent the whole of the
detector data for a particular Level-1/Global identifier.

7. The fragments should have identical structure;
The event format shall facilitate the identification of fragments;
9. The event format shall provide an event header;

10. The event format shall provide the event identifier and trigger type within the full
event header;

11. The event format shall provide a means of identifying whether the event has been
corrupted during transmission within the Data Flow, e.g. DMA time-out, truncation
etc;

12. The event format shall provide a means of identifying whether the event has been
corrupted due to hardware problems, e.g. a bit error.

2.2 Function and purpose

The event format defines the structure of the data at various stages within the
HLT and DAQ, and allows elements of the Data Flow and HLT processing tasks to access
the data without resorting to the use of other resources, e.g. data bases. In addition, it defines
additional data that is added to the detector data, by elements of the TDAQ, allowing pro-
cessing tasks to quickly identify the type and origin of each event.

2.3 General format

The general format of a Full Event is shown in Figure 1. As can be seen it is built
from fragments (see Requirement 6. in Section 2.1). A Full Event is an aggregation of ROB
fragments. Each of the latter map on to a single ROD fragment. Each fragment type, except
the ROD fragment, has a header which contains all the event formatting information need to
decode it. Besides the generic header, ROB and Full Event fragments may contain a single
32-bit word trailer with a check-sum of its contents (see Section 6). For ROD and ROB
fragments, hardware considerations have led to the combination of a header and a trailer,
however, the general principles are similar and it is the combination of the header and trailer
which provide the event formatting information required to decode it. Details of ROD frag-
ments are given in Section 4.

Full Event Header

ROB Header

ROB Fragment

Optional Trailer (check-sum)

C

Optional Trailer
(check-sum)

ROD Header

ROD Trailer

Figure 1: The general event format.

The class diagram of the raw event format is shown in Figure 2. Referring to the
latter, it can be seen that Full Events and ROB fragments are types of Fragments, which are
characterized by a common Generic Header. Full Event fragments contain any number of
ROB fragments each of which contains a single ROD fragment. Full Event fragments extend
the Fragment type header with specific fields, as it will be shown in Section 3.

Full Event Fragment

consists of

0.1
| Header | | Data | | Trailer |

consists of O
| Genericl

is a generalisation of

|Event| |ROB| |ROD|

Figure 2: The class diagram of the raw
event format.

As can be seen from Figure 2 the proposed raw event format is modular and
based on event fragments (see Section 2.1). All event fragments have the same structure, ex-

cept the ROD fragment due to identified implementation issues. This fulfils Requirement 7.
(see Section 2.1).

3 Header formats

3.1 The Header

Start of Header Marker

Total Fragment Size

YIETIEYS)

Total Header Size

Format Version Number

Source Identifier
Number of Status Elements (N)
Status Element[0]

Status Element[N-1]
Check Sum Type
Specific Header[0]

oiy10ads

Specific Header[M]

Table 2: The (generic) fragment header.

The Header type is an aggregation of Generic and Specific parts, see Table 2.
The Generic part is the same for Full Event and ROB fragments and slightly different for
ROD fragments (see Section 4). The Specific part allows fragment specific information to be
included in the header.

3.1.1 The Generic component
The Generic component consists of the following elements:

1. Start of header marker: This marker indicates the start of a fragment header and is it-
self part of the header. Hence, it is the first word of a fragment. The value of this ele-
ment will be unique for each type of fragment, but the structure shall be identical. The
structure will allow the endianess of the fragment header to be determined;

2. Total fragment size: This element indicates the total size of the fragment, including
the Header;

3. Header size: The element indicates the total size of the Header;
Format version number: This element gives the format version of the fragment;

5. Source identifier: This element identifies the origin of the fragment. It consists of a
sub detector ID, and Module ID. The combination of these fields should allow

the Source identifier to be unique across the whole of Atlas. The Module ID refers to
the module which builds and adds the header to the event fragment;

6. Number of status elements: The value of this element is the number of status elements
in the Header;

7. Status element: This element contains information about the status of the data within
the fragment. The structure of this element is specific to the module which builds the
header;

8. Check Sum Type: This element indicates if this fragment contain a check-sum at-
tached to its trailer, as a single 32-bit word, depending on this value. This field can
currently take the following values:

Value Description

0x0 No check-sum is present
(no trailer)

Ox1 A CRC-16/CCITT check
is available

0x2 An Adler-32 check is
available

A value of 0x0 indicates this fragment has no trailer and therefore no check-sum
against its payload. A value different from zero indicates a check-sum is available. The al-
gorithm applied for its calculation is defined by the table above. Check on Appendix A for
details and references.

3.1.2 The specific component

Following the Generic component of the header there is a fragment Specific com-
ponent consisting of zero or more words, depending on the fragment type. See Section 5.9
for details.

4 ROD data format

The definition of the format of the data transferred between the ROD and ROB
must take into account factors such as: the data is formatted in hardware and not necessarily
by programmable devices; the information within the header may influence component cost
and ROD performance; the differences in ROD designs.

To accommodate the differences in the ROD designs the data transferred from a
ROD to a ROB should have both a Header and a Trailer as shown in Figure 3.

Start of Header Marker
Header size
Format version number

Source identifier Header
Run number
Extended Level 1 1D
Bunch crossing 1D
Level 1 trigger type
Detector event type |

| Status elements

Data elements Status elements

OR

Data elements

Siatus elements

slatus elements

Number of status elements J
MNumber of data elements Trailer

Status block position

Figure 3: The ROD fragment format.

The Trailer contains the Number of data elements, Number of Status elements
and the status block position. Some detector groups have voiced a preference for having the
Status elements proceeding the Data elements. Instead of imposing an order, an additional
element, Status block position, has been added to the trailer. The value of this element
defines the relative order of the Data and Status elements. A value of zero indicates that the
status block precedes the data block and a value of one indicates that the status block follows
the data block. These two cases are shown in Figure 3 for reasons of clarity. The Data and
Status elements are 32-bit integers.

The header is derived from that presented in Section 3.1 and, with the exception
of the Source Identifier, the elements have the same meaning. For a ROD fragment the value
contained in bytes 0 and 1 of the Source Identifier is the ROL number, unique to each ROL.
Note, the value of the Start of Header Marker also identifies the byte order of the ROD frag-
ment Data and Status elements.

Within the ROD fragment header five additional elements are explicitly defined,
these are:

1. Run Number: An element whose value is unique during the lifetime of the experiment
(see Section 5.4);

2. Extended Level 1 ID: The Extended L1ID [3] formed by the 24-bit L1ID generated in
the TTCrx and the 8-bit ECRID implemented in the ROD;

3. Bunch Crossing ID: The 12-bit bunch crossing identifier generated in the TTCrx;

4. Level 1 Trigger Type: The 8-bit word generated by the Central Trigger Processor or
LTP and transmitted by the TTC system [4]. The remaining 24-bits are unused and
set to zero.

Note, a value of zero indicates a ROL Test Block as described in [5];

10

5. Detector event type: This element allows additional information to be supplied on the
type of event, particularly in the case of calibration events. It allows the detectors to
specify the exact type of calibration event that they have generated.

The first status word shall indicate the global status of the fragment. A non-zero
value of this element indicates that the data payload of the fragment is corrupted, e.g. missing
data and or bit errors, see Section 5.8.

5 Implementation

This section presents an implementation of the event format described in the pre-
vious sections. It defines the Start of Header Markers, the Fragment IDs, the sub-detector IDs
and the elements specific to the different types of fragments. This implementation is for 32-
bit machines and demands that the Generic Header, ROD Header and Trailer are aligned on
four byte boundaries. All header and trailer elements are 32-bit integers. Note, future evolu-
tion of the event format may demand eight byte alignment.

In this implementation: the ROD and ROB header are built by the ROD and ROB
respectively; the Event Header is built by the SFI. The implementation of the Event Format
does not impose a specific order of the fragments. It follows that the user should not rely on
any particular ordering information to be constant among different events: e.g. the first ROB
fragment on an event may have source identifier set to Pixel Disk, module id. equals to 34,
followed by a ROB fragment with source identifier set to LArg EM C-Side, module id. 5. For
the next event, the sequence may be completely different with respect to detector identifiers
or specific module identifiers.

The following points have also been taken into account:
o Floating point types are not used in this implementation as they are not portable;
e Byte ordering: The endianness of the ROD fragment is defined in [6].

The fragments generated by TDAQ components shall be little endian, reflecting the
fact that all processing nodes house little endian processors. The implementation of
the Start of Header Marker allows the endianness of the fragment to be verified, see
Section 5.1.

e Alignment: The implementation demands that all headers are aligned on 4-byte
boundaries.

5.1 Start of Header Markers

Each fragment header begins with a Start of Header Marker. These markers fulfil
Requirements 7, 8 and 9 as described in Section 2.1. The markers at each level of the event
format are given in Table 3.

The asymmetry in the value of the Start of Header Marker allows for the byte or-
dering used in the fragment Header to be identified. Note, for the ROD fragment it refers to
the byte order of the ROD fragment as a whole.

11

Fragment Type Header Marker

ROD Oxeel234ee
ROB 0xdd1l234dd
Full Event Oxaal234aa

Table 3: Start of Header Markers.

5.2 Source Identifiers

The structure of the Source identifier, as shown below, consists of three byte
fields. The combination of these three fields allows the Source identifier to be unique across
all sub-detectors. The values that the Sub-detector identifier may have are defined in Section
5.3. The value of the Module ID for a ROD fragment is the ROL number and is unique to
each ROL. For other fragments, the value that may be assigned to the Module ID is free to be
defined by the system or sub-system implementers concerned.

Byte 3 2 1 0

Optional (= 0x0) Sub-Detector ID Module ID

Byte 3 is optional and should be initialised to a value of zero. The value of this
field may be used by implementers of TDAQ processors to carry extra information about
hardware connectivity, for debugging purposes. An example use-case for this field happens
in the ROS: its identifier is placed in this reserved field for the ROB fragment it produces and
can be used for debugging hardware connection problems.

5.3 Sub-Detector IDs

The values that the Sub-detector ID field may have are given in Table 4. Values not listed in
this table are considered illegal.

12

Detector ID Detector ID
Full Event 0x00 Muon MDT Barrel A Side 0x61
Pixel Barrel 0x11 MDT Barrel C Side 0x62
Disk 0x12 MDT Endcap A Side 0x63
B-layer 0x13 MDT Endcap C Side 0x64
SCT Barrel A Side 0x21 RPC Barrel A Side 0x65
Barrel C Side 0x22 RPC Barrel C Side 0x66
Endcap A Side 0x23 TGC Endcap A Side 0x67
Endcap C Side 0x24 TCG Endcap C Side 0x68
TRT Barrel A Side 0x31 CSC Endcap A Side 0x69
Barrel C Side 0x32 CSC Endcap C Side Ox6a
Endcap A Side 0x33 TDAQ Calorimeter Preprocessor 0x71
Endcap C Side 0x34 Calo Cluster processor DAQ 0x72
LArg EMB A Side 0x41 Calorimeter Cluster processor Rol =~ 0x73
EMB C Side 0x42 Calo Jet/Energy processor DAQ | 0x74
EMEC A Side 0x43 Calo Jet/Energy processor Rol 0x75
EMEC C Side 0x44 Muon CTP Interface (MuCTPI) 0x76
HEC A Side 0x45 CTP 0x77
HEC C Side 0x46 L2SV 0x78
FCAL A Side 0x47 SFI 0x79
FCAL C Side 0x48 SFO 0x7a
TileCal Laser Crate 0x50 Level-2 0x7b
Barrel A Side 0x51 Event Filter 0x7c
Barrel C Side 0x52 | Forward BCM 0x81
Extended A Side 0x53 Lucid 0x82
Extended C Side 0x54 zZDC 0x83
Alpha 0x84

Table 4: Sub-detector Ids.

5.4 Run number

Z€r0.

Byte

Run Number

5.5 Total fragment and header size

fragment and the size of the fragment header in units of 32-bit integers.

This element is 32-bits. The run number is a 31-bit integer and the highest bit is

These elements are each 32-bit integers and their values give the total size of the

13

5.6 Format version number

This element consists of two 16-bit fields, as shown below. The combined value
of these fields identifies the fragment format version. The Major version number shall be the
same for all fragments in the event that possess a Generic Header. This assertion excludes
ROD fragments, which may ship with a different (older) version number. The Minor version
number has a value dependent on the fragment type and will be used to identify the format of
the specific part of the fragment header and in a ROD fragment the format of the sub-detector
Data.

The implementation described in this document defines the Format Version
Number to be 4.0-0.0 (0x04000000), i.e. Major version number is 4.0 and the Minor version
number is 0.0. For ROD fragments, the Major version number is 3.1 and the Minor version is
free to be chosen by the specific Sub Detector groups.

Byte 3 2 1 0

Major version number Minor version number

5.7 Number of status elements

A value of zero indicates that there are no subsequent Status elements and there-
fore there are no known errors associated to the fragment.

5.8 Status elements

This element is a 32-bit integer. The first Status element shall be divided into
two 2-byte fields labelled Generic and Specific, see below. The values and error conditions
indicated by the Generic field are the same for all fragments, while the values and error con-
ditions indicated by the Specific field have meanings specific to the fragment. A non-zero
value of this element indicates that the event fragment has a problem, e.g. truncated. The in-
formation conveyed by the status element only refers to the fragment of which it is an ele-
ment.

The remaining status elements following the first word of a fragment may have
different formatting, to be defined by the implementers of the specific software or hardware
that creates or manipulates these fragments.

Byte 3 2 1 0

Specific Generic

The currently defined values and meanings of the Generic field of the first Status
element are given in Table 5.

14

Generic Field Value Description

0 (0x00) Unclassified

1 (0x01) An internal check of the BCID has failed.

2 (0x02) An internal check of the EL1ID has failed.

4 (0x04) A time out in one of the modules has occurred. The fragment
may be incomplete.

8 (0x08) Data may be incorrect. Further explanation in the Specific
filed.

16 (0x0f) An overflow in one of the internal buffers has occurred. The

fragment may be incomplete.

Table 5: Values and meaning for the Generic field of the first status element.
The analysis of the first status word should follow these principles:

1. If there are no status words in a fragment, then there are no known problems with that
fragment;

2. If there are status words associated with a fragment:

1. If the first status word is all zeroes (both generic and specific parts together) then
there is no know problem with the fragment;

2. If either the generic or specific parts of the first status words are not zero, a prob-
lem might have occurred in which case the user is expected to understand the con-
tents of the tables in this section.

5.8.1 ROB specific status

The meaning and values of the Specific field of the Status elements in the ROB
header are given Reference [7].

5.8.2 HLT results the ROB specific status

Because HLT results (L2 and EF) are wrapped around common ROB fragments,
the specific status bits defined in Reference [7] may also apply, where relevant, to this kind
of fragment. In particular, the following protocol in decoding the HLT result ROB status
should be used:

1. If an error is signalled in the generic part of the first status word of an HLT generated
ROB (L2 or EF results), details are specified in the specific part of this word;

2. In case 1 holds, and all bits in the specific part are not set, the reported issue was de-
tected by the HLT framework and more details may be available in the remaining
status words attached to this fragment header;

3. In case 1 holds, and any bit in the specific part is set, the reported issue was detected
by the Dataflow framework. The existing data in the result payload is either empty or
dummy and cannot be interpreted by the HLT framework.

While decoding the HLT result, the HLT or Offline frameworks can use further
information provided in the specific part of the first status word in the Full Event header to
complement on the information provided by the HLT result fragment itself.

5.8.3 Full Event specific status

The meaning and values of the Specific field of the Status elements in the Full
Event header are given in Table 6. For each of these values the Generic field should assume

15

the value of 0x8 (Data may be incorrect). This table also describes the agents in the Data Flow
system that can set these fields.

Bit Meaning Agent
16 L2_PROCESSING_TIMEOUT L2SV
17 L2PU_PROCESSING_TIMEOUT L2PU
18 SFI_DUPLICATION_WARN SFI
19 DFM_DUPLICATION_WARN DFM
20 L2PSC_PROBLEM (*) L2PU

21 Reserved (=0x0)
22 Reserved (=0x0)
23 Reserved (=0x0)

24 EF_PROCESSING_TIMEOUT EFD
25 PT_PROCESSING_TIMEOUT PT
26 SFO_DUPLICATION_WARN EFD
27 EFD_RECOVERED_EVENT EFD
28 EFPSC_PROBLEM (*) PT
29 EFD_FORCED_ACCEPT EFD

30 Reserved (=0x0)
31 Reserved (=0x0)

Table 6: Values and description of the Specific field in the Full Event status element.

(*) Note: In the occurrence of a PSC Problem, indicated by flags on bits 20 (for
Level-2) or 28 (for Event Filter), the PSC may use more status words following the first one
to indicate the exact cause of the problem. This protocol remains private to agents that can
effectively make use of this information — all being either on the HLT or Off-line software
domains. Therefore, the meaning of the words following the first status word is not detailed
in this document.

5.9 Fragment specific elements

5.9.1 Full Event specific elements

The Full Event specific elements are defined in Table 7. Each element in this
table is padded to form a 32-bit word. The table also presents the required order of the specit-
ic elements and the definition is invariant with respect to the run type.

16

Event Header words Definition

Bunch crossing time (seconds)? 32-bit integer
Bunch crossing time (nanoseconds)’ 32-bit integer
Global event ID* 32-bit integer
Run type 32-bit integer
Run number 32-bit integer
Luminosity block number? 16-bit integer
Extended Level 1 ID 32-bit integer
BCID 12-bit integer
Level 1 trigger type 8-bit integer
Level 1 trigger info words 32-bit integer
Ist Level 1 trigger info word 32-bit integer
Nth Level 1 trigger info word 32-bit integer
Level 2 trigger info words 32-bit integer
1st Level 2 trigger info word 32-bit integer
Nth Level 2 trigger info word 32-bit integer
Event Filter info words 32-bit integer
1st Event Filter info word 32-bit integer
Nth Event Filter info word 32-bit integer
Stream Tag words 32-bit integer
1st Stream Tag word 32-bit integer
Nth Stream Tag word 32-bit integer

Table 7: Fragment specific header for the Full Event.

® Bunch crossing time: This element is the bunch crossing time. It is two 32-bit integers
encoding the GPS time of the bunch crossing as recorded by the Central Trigger Pro-
cessor and is the number of seconds and nanoseconds since Ist January 1970 (in two
separated fields). The Full Event fragment is built by the SFI, therefore the value of
this element is copied from the Level 1 CTP fragment into these fields;

e Global event ID: The value of this 32-bit integer will be provided by the DFM com-
ponent of the Event Building subsystem. The value will be unique within a run;

e Run type: This element is 32-bits. A preliminary enumeration of Run Type is given

in Table 8.
Run Type Value
Physics 0x00000000
Calibration 0x00000001
Cosmics 0x00000002
Test 0x0000000¢f
Simulation 0x80000000

Table 8: Enumeration of Run Type. The “simulation” flag (last, MSB bit), may be set together with any of the
previous entries to indicate the data origin (Monte Carlo).

17

Run number: This element is 31-bits, the most significant bit is unused;
Luminosity block number: This element is 16-bits;

Extended Level 1 ID: The extended LVL1 ID [3] formed by the 24-bit L1ID gener-
ated in the TTCrx and the 8-bit ECRID implemented in the ROD;

BCID: The 12-bit bunch crossing identifier generated in the TTCrx;

Level 1 trigger type: An 8-bit word as generated by the Central Trigger Processor and
transmitted by the TTC system [4]. The remaining 24-bits are un-used and set to zero;

Level 1 trigger info words: The number of Level 1 trigger info words, excluding
this one;

Level 1 trigger info: A number (given by the previous element) of 32-bit words sum-
marising the Level 1 trigger chain. The exact details of these words are not yet
defined;

Level 2 trigger info words: The number of Level 2 trigger info words, excluding
this one;

Level 2 trigger info: A number (given by the previous element) of 32-bit words sum-
marising the Level 2 trigger chain. The exact details of these words are not yet
defined;

Event Filter info words: The number of Event Filter info words, excluding this one;

Event Filter info: A number (given by the previous element) of 32-bit words summar-
ising the Event Filter chain. The exact details of these words are not yet defined;

Stream tag words: This is the number of encoded stream tag words, excluding this
one;

Stream tag: This element is a C-string identifying to which data stream or data
streams the event has been assigned. It is a null-terminated C-String. The composition
of each stream tag is the following

o name: defines the name of the tag. It is a free string;
o type: defines the type of the tag. It is a free string;

o obeys_lumiblock: defines if the event obeys the lumiblock boundaries or not. It is
a boolean value.

Whenever detector or simulated data is recorded, a Full Event header shall be

used to wrap the various ROB fragments. In case Full Event fragments are produced directly
from a ROS dump (e.g. when it records detector data for debugging purposes), fields marked
with the symbol “t” at Table 7 will not be properly initialized due to the nature of this com-
ponent. In this case:

e The Run Type field will be set to “Test” (0xf);

e The Bunch Crossing time entries should be both set to zero (0x0).

5.9.2 ROB specific header

No fragment specific elements are currently defined.

18

5.10 Event Filter output

The input to the Event Filter is a Full Event fragment. The output of the Event
Filter shall be the same fragment with an additional ROB fragment appended. The value of
the Sub-detector identifier in the Source identifier of this additional fragment, shall be equal
to that of the Event Filter.

5.11 ROD header and trailer

The initial implementation of the ROD header and trailer has been given in Sec-
tion 4. These elements, including the Data and Status elements, are 32-bit integers, e.g. The
Level I Trigger type is an 8-bit value, therefore the remaining 24-bits are unused.

6 Optional Check-sum

6.1 The ROBIN/ROD check-sum

The ROBIN hardware is able to perform a check-sum on its payload, the whole
ROD fragment. It can, optionally, ship this check-sum as a single 32-bit value just after the
ROB fragment itself, forming a single word trailer. The chosen algorithm is a
CRC-16/CCITT sum [8], which can be easily executed in hardware.

Because it is a 16-bit CRC sum, it is executed over the most significant 16-bit
word separately from the less significant part. Both CRC sums are then stored in the ROB
trailer, at equivalent places.

6.2 The Full Event fragment check-sum

The Full Event fragment may optionally carry a check-sum trailer. This check-
sum maybe calculated using either CRC-16/CCITT or Adler-32 [9]. The later algorithm re-
quires less computational power, being better adapted for calculations within HLT or Off-
line processors being therefore the recommended one in those cases.

Following the model in the ROBIN check-sum, the check-sum sitting in the Full
Event Fragment trailer applies only to this fragment's payload, i.e., the ROB fragments it
contains. In the case an Adler-32 check-sum is used, this technique allows for a “rolling”
check-sum calculation to be deployed while the event is being constructed or extended (e.g.
by the Event Filter). Event modifications (e.g. the suppression of parts of an event) would
still require the check-sum to be recomputed.

The recommended implementation for Adler-32 sits in zlib [10].

References

[1] ATLAS TDAQ, ATLAS High-Level Trigger Data Acquisition and Controls Technical
Design Report, CERN, Appendix B, CERN/LHCC/2003-022 (2003)

[2] C. Mazza, Software Engineering Standards, Prentice Hall, ISBN: 0-13-106568-8

19

[3] R. Spiwoks, Presentation given to the Front-end Electronics Co-ordination on 27/Febru-
ary/2002,

[4] Level-1 Trigger Group, Definition of the trigger-type word, CERN, EDMS: ATL-
DA-0022

[5] R. McLaren, ROL Test Block, CERN, https://edms.cern.ch/document/439294/1
[6] R. McLaren, ATLAS Read-Out Drivers: Endianness, CERN, EDMS, ATC-TD-EC-0001

[7] Markus Joos, ROBIN Specific Status, CERN,
https://twiki.cern.ch/twiki/bin/view/Atlas/ROBINFragmentErrors

[8] Cyclic redundancy check, http://en.wikipedia.org/wiki/Cyclic_redundancy_check
[9] Adler-32, http://en.wikipedia.org/wiki/Adler-32
[10] Zlib, http://www.zlib.net/

20

	Issue
	Revision
	Date
	Reason for change
	1 Introduction
	1.1 Purpose of the document
	1.2 Overview
	1.3 Boundaries
	1.4 Definitions, acronyms and abbreviations

	2 General Description
	2.1 Requirements
	2.2 Function and purpose
	2.3 General format

	3 Header formats
	3.1 The Header
	3.1.1 The Generic component
	3.1.2 The specific component

	4 ROD data format
	5 Implementation
	5.1 Start of Header Markers
	5.2 Source Identifiers
	5.3 Sub-Detector IDs
	5.4 Run number
	5.5 Total fragment and header size
	5.6 Format version number
	5.7 Number of status elements
	5.8 Status elements
	5.8.1 ROB specific status
	5.8.2 HLT results the ROB specific status
	5.8.3 Full Event specific status

	5.9 Fragment specific elements
	5.9.1 Full Event specific elements
	5.9.2 ROB specific header

	5.10 Event Filter output
	5.11 ROD header and trailer

	6 Optional Check-sum
	6.1 The ROBIN/ROD check-sum
	6.2 The Full Event fragment check-sum

